Information extraction with active learning : a case study in legal text

Fil: Cardellino, Cristian Adrián. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.

Bibliographic Details
Main Authors: Cardellino, Cristian Adrián, Villata, Serena, Alonso i Alemany, Laura, Cabrio, Elena
Format: acceptedVersion
Language:eng
Published: 2022
Subjects:
Online Access:http://hdl.handle.net/11086/27448
_version_ 1801215608749031424
author Cardellino, Cristian Adrián
Villata, Serena
Alonso i Alemany, Laura
Cabrio, Elena
author_facet Cardellino, Cristian Adrián
Villata, Serena
Alonso i Alemany, Laura
Cabrio, Elena
author_sort Cardellino, Cristian Adrián
collection Repositorio Digital Universitario
description Fil: Cardellino, Cristian Adrián. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.
format acceptedVersion
id rdu-unc.27448
institution Universidad Nacional de Cordoba
language eng
publishDate 2022
record_format dspace
spelling rdu-unc.274482022-10-13T11:08:41Z Information extraction with active learning : a case study in legal text Cardellino, Cristian Adrián Villata, Serena Alonso i Alemany, Laura Cabrio, Elena Active learning Natural language processing Ontology-based information extraction acceptedVersion Fil: Cardellino, Cristian Adrián. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Fil: Villata, Serena. Institut National de Recherche en Informatique et en Automatique; France. Fil: Alonso i Alemany, Laura. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Fil: Cabrio, Elena. Institut National de Recherche en Informatique et en Automatique; France. Active learning has been successfully applied to a number of NLP tasks. In this paper, we present a study on Information Extraction for natural language licenses that need to be translated to RDF. The final purpose of our work is to automatically extract from a natural language document specifying a certain license a machine-readable description of the terms of use and reuse identified in such license. This task presents some peculiarities that make it specially interesting to study: highly repetitive text, few annotated or unannotated examples available, and very fine precision needed.In this paper we compare different active learning settings for this particular application. We show that the most straightforward approach to instance selection, uncertainty sampling, does not provide a good performance in this setting, performing even worse than passive learning. Density-based methods are the usual alternative to uncertainty sampling, in contexts with very few labelled instances. We show that we can obtain a similar effect to that of density-based methods using uncertainty sampling, by just reversing the ranking criterion, and choosing the most certain instead of the most uncertain instances. acceptedVersion Fil: Cardellino, Cristian Adrián. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Fil: Villata, Serena. Institut National de Recherche en Informatique et en Automatique; France. Fil: Alonso i Alemany, Laura. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Fil: Cabrio, Elena. Institut National de Recherche en Informatique et en Automatique; France. Otras Ciencias de la Computación e Información 2022-07-25T14:43:53Z 2022-07-25T14:43:53Z 2015 article http://hdl.handle.net/11086/27448 eng De la versión publicada: https://doi.org/10.1007/978-3-319-18117-2_36 Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ Impreso ISSN: 0302-9743
spellingShingle Active learning
Natural language processing
Ontology-based information extraction
Cardellino, Cristian Adrián
Villata, Serena
Alonso i Alemany, Laura
Cabrio, Elena
Information extraction with active learning : a case study in legal text
title Information extraction with active learning : a case study in legal text
title_full Information extraction with active learning : a case study in legal text
title_fullStr Information extraction with active learning : a case study in legal text
title_full_unstemmed Information extraction with active learning : a case study in legal text
title_short Information extraction with active learning : a case study in legal text
title_sort information extraction with active learning a case study in legal text
topic Active learning
Natural language processing
Ontology-based information extraction
url http://hdl.handle.net/11086/27448
work_keys_str_mv AT cardellinocristianadrian informationextractionwithactivelearningacasestudyinlegaltext
AT villataserena informationextractionwithactivelearningacasestudyinlegaltext
AT alonsoialemanylaura informationextractionwithactivelearningacasestudyinlegaltext
AT cabrioelena informationextractionwithactivelearningacasestudyinlegaltext