Time-series Prediction with BEMCA Approach: application to short rainfall series

Fil: Rodriguez Rivero, Cristian. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Ingeniería Electrónica; Argentina.

Bibliographic Details
Main Authors: Rodríguez Rivero, Cristian, Tupac, Yvan, Pucheta, Julian, Juarez, Gustavo, Franco, Leonardo, Otaño, Paula
Format: conferenceObject
Language:eng
Published: 2025
Subjects:
Online Access:http://hdl.handle.net/11086/557243
_version_ 1841742276766728192
author Rodríguez Rivero, Cristian
Tupac, Yvan
Pucheta, Julian
Juarez, Gustavo
Franco, Leonardo
Otaño, Paula
author_facet Rodríguez Rivero, Cristian
Tupac, Yvan
Pucheta, Julian
Juarez, Gustavo
Franco, Leonardo
Otaño, Paula
author_sort Rodríguez Rivero, Cristian
collection Repositorio Digital Universitario
description Fil: Rodriguez Rivero, Cristian. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Ingeniería Electrónica; Argentina.
format conferenceObject
id rdu-unc.557243
institution Universidad Nacional de Cordoba
language eng
publishDate 2025
record_format dspace
spelling rdu-unc.5572432025-08-27T12:21:10Z Time-series Prediction with BEMCA Approach: application to short rainfall series Rodríguez Rivero, Cristian Tupac, Yvan Pucheta, Julian Juarez, Gustavo Franco, Leonardo Otaño, Paula Forecasting Relative entropy Permutation entropy Ingeniería electrónica Inteligencia Artificial Fil: Rodriguez Rivero, Cristian. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Ingeniería Electrónica; Argentina. Fil: Tupac, Yvan. Universidad Catolica San Pablo. Departamento de Ciencias de la Computación; Brasil. Fil: Pucheta, Julian Antonio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Ingeniería Electrónica; Argentina. Fil: Juarez, Gustavo. Universidad Nacional de Tucumán. Laboratorio de Inteligencia Artificial; Argentina. Fil: Franco, Leonardo. Universidad de Málaga. Departamento de Ciencias de la Computación; España. Fil: Otaño, Paula. Universidad Tecnológica Nacional. Departamento de Ingeniería en Sistemas; Argentina. This paper presents a new method to forecast short rainfall time-series. The new framework is by means of Bayesian enhanced modified combined approach (BEMCA) using permutation and relative entropy with Bayesian inference. The aim at the proposed filter is focused on short datasets consisting of at least 36 samples. The structure of the artificial neural networks (ANNs) change according to data model selected, such as the Bayesian approach can be combined with the entropic information of the series. Then computational results are assessed on time series competition and rainfall series, afterwards they are compared with ANN nonlinear approaches proposed in recent work and naïve linear technique such us ARMA. To show a better performance of BEMCA filter, results are analyzed in their forecast horizons by SMAPE and RMSE indices. BEMCA filter shows an increase of accuracy in 3-6 prediction horizon analyzing the dynamic behavior of chaotic series for short series predictions. Fil: Rodriguez Rivero, Cristian. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Ingeniería Electrónica; Argentina. Fil: Tupac, Yvan. Universidad Catolica San Pablo. Departamento de Ciencias de la Computación; Brasil. Fil: Pucheta, Julian Antonio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Ingeniería Electrónica; Argentina. Fil: Juarez, Gustavo. Universidad Nacional de Tucumán. Laboratorio de Inteligencia Artificial; Argentina. Fil: Franco, Leonardo. Universidad de Málaga. Departamento de Ciencias de la Computación; España. Fil: Otaño, Paula. Universidad Tecnológica Nacional. Departamento de Ingeniería en Sistemas; Argentina. Sistemas de Automatización y Control 2025-08-26T13:38:12Z 2025-08-26T13:38:12Z 2017 conferenceObject http://hdl.handle.net/11086/557243 eng Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ Impreso
spellingShingle Forecasting
Relative entropy
Permutation entropy
Ingeniería electrónica
Inteligencia Artificial
Rodríguez Rivero, Cristian
Tupac, Yvan
Pucheta, Julian
Juarez, Gustavo
Franco, Leonardo
Otaño, Paula
Time-series Prediction with BEMCA Approach: application to short rainfall series
title Time-series Prediction with BEMCA Approach: application to short rainfall series
title_full Time-series Prediction with BEMCA Approach: application to short rainfall series
title_fullStr Time-series Prediction with BEMCA Approach: application to short rainfall series
title_full_unstemmed Time-series Prediction with BEMCA Approach: application to short rainfall series
title_short Time-series Prediction with BEMCA Approach: application to short rainfall series
title_sort time series prediction with bemca approach application to short rainfall series
topic Forecasting
Relative entropy
Permutation entropy
Ingeniería electrónica
Inteligencia Artificial
url http://hdl.handle.net/11086/557243
work_keys_str_mv AT rodriguezriverocristian timeseriespredictionwithbemcaapproachapplicationtoshortrainfallseries
AT tupacyvan timeseriespredictionwithbemcaapproachapplicationtoshortrainfallseries
AT puchetajulian timeseriespredictionwithbemcaapproachapplicationtoshortrainfallseries
AT juarezgustavo timeseriespredictionwithbemcaapproachapplicationtoshortrainfallseries
AT francoleonardo timeseriespredictionwithbemcaapproachapplicationtoshortrainfallseries
AT otanopaula timeseriespredictionwithbemcaapproachapplicationtoshortrainfallseries