Exploring Scoring Function Space: Developing Computational Models for Drug Discovery

Impact Factor (IF) - 2023 (2024 update): 3.5 This article was made available online on 14 de junio de 2023 as a Fast Track article with title: "Exploring Scoring Function Space: Developing Computational Models for Drug Discovery".

Bibliographic Details
Main Authors: Bitencourt Ferreira, Gabriela, Villarreal, Marcos A., Quiroga, Rodrigo, Biziukova, Nadezhda, Poroikov, Vladimir, Tarasova, Olga, de Azevedo, Walter F. Jr.
Other Authors: https://orcid.org/0000-0002-3120-8256
Format: info:eu-repo/semantics/publishedVersion
Language:eng
Published: 2024
Subjects:
Online Access:http://hdl.handle.net/11086/552745
https://www.ingentaconnect.com/content/ben/cmc/2024/00000031/00000017/art00005
https://pubmed.ncbi.nlm.nih.gov/36944627/
http://doi.org/10.2174/0929867330666230321103731
_version_ 1806282346109861888
author Bitencourt Ferreira, Gabriela
Villarreal, Marcos A.
Quiroga, Rodrigo
Biziukova, Nadezhda
Poroikov, Vladimir
Tarasova, Olga
de Azevedo, Walter F. Jr.
author2 https://orcid.org/0000-0002-3120-8256
author_facet https://orcid.org/0000-0002-3120-8256
Bitencourt Ferreira, Gabriela
Villarreal, Marcos A.
Quiroga, Rodrigo
Biziukova, Nadezhda
Poroikov, Vladimir
Tarasova, Olga
de Azevedo, Walter F. Jr.
author_sort Bitencourt Ferreira, Gabriela
collection Repositorio Digital Universitario
description Impact Factor (IF) - 2023 (2024 update): 3.5 This article was made available online on 14 de junio de 2023 as a Fast Track article with title: "Exploring Scoring Function Space: Developing Computational Models for Drug Discovery".
format info:eu-repo/semantics/publishedVersion
id rdu-unc.552745
institution Universidad Nacional de Cordoba
language eng
publishDate 2024
record_format dspace
spelling rdu-unc.5527452024-07-31T12:25:45Z Exploring Scoring Function Space: Developing Computational Models for Drug Discovery Bitencourt Ferreira, Gabriela Villarreal, Marcos A. Quiroga, Rodrigo Biziukova, Nadezhda Poroikov, Vladimir Tarasova, Olga de Azevedo, Walter F. Jr. https://orcid.org/0000-0002-3120-8256 https://orcid.org/0000-0001-8223-5193 https://orcid.org/0000-0001-5015-0531 https://orcid.org/0000-0002-2044-1327 https://orcid.org/0000-0001-7937-2621 https://orcid.org/0000-0002-3723-7832 https://orcid.org/0000-0001-8640-357X Scoring function space Drug discovery Machine learning Protein space Protein-ligand interactions Systems biology Impact Factor (IF) - 2023 (2024 update): 3.5 This article was made available online on 14 de junio de 2023 as a Fast Track article with title: "Exploring Scoring Function Space: Developing Computational Models for Drug Discovery". info:eu-repo/semantics/publishedVersion Fil: Bitencourt-Ferreira, Gabriela. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil. Fil: Villarreal, Marcos A. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina. Fil: Villarreal, Marcos A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina. Fil: Quiroga, Rodrigo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina. Fil: Quiroga, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina. Fil: Biziukova, Nadezhda. Institute of Biomedical Chemistry, Moscow; Russia. Fil: Poroikov, Vladimir. Institute of Biomedical Chemistry, Moscow; Russia. Fil: Tarasova, Olga. Institute of Biomedical Chemistry, Moscow; Russia. Fil: de Azevedo, Walter F. Jr. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil. Fil: de Azevedo, Walter F. Jr. The Pontifical Catholic University of Rio Grande do Sul. Specialization Program in Bioinformatics, Porto Alegre; Brazil. Background: The idea of scoring function space established a systems-level approach to address the development of models to predict the affinity of drug molecules by those interested in drug discovery. Objective: Our goal here is to review the concept of scoring function space and how to explore it to develop machine learning models to address protein-ligand binding affinity. Methods: We searched the articles available in PubMed related to the scoring function space. We also utilized crystallographic structures found in the protein data bank (PDB) to represent the protein space. Results: The application of systems-level approaches to address receptor-drug interactions allows us to have a holistic view of the process of drug discovery. The scoring function space adds flexibility to the process since it makes it possible to see drug discovery as a relationship involving mathematical spaces. Conclusion: The application of the concept of scoring function space has provided us with an integrated view of drug discovery methods. This concept is useful during drug discovery, where we see the process as a computational search of the scoring function space to find an adequate model to predict receptor-drug binding affinity. info:eu-repo/semantics/publishedVersion Fil: Bitencourt-Ferreira, Gabriela. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil. Fil: Villarreal, Marcos A. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina. Fil: Villarreal, Marcos A. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina. Fil: Quiroga, Rodrigo. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Matemática y Física; Argentina. Fil: Quiroga, Rodrigo. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba; Argentina. Fil: Biziukova, Nadezhda. Institute of Biomedical Chemistry, Moscow; Russia. Fil: Poroikov, Vladimir. Institute of Biomedical Chemistry, Moscow; Russia. Fil: Tarasova, Olga. Institute of Biomedical Chemistry, Moscow; Russia. Fil: de Azevedo, Walter F. Jr. Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre; Brazil. Fil: de Azevedo, Walter F. Jr. The Pontifical Catholic University of Rio Grande do Sul. Specialization Program in Bioinformatics, Porto Alegre; Brazil. 2024-07-15T23:59:08Z 2024-07-15T23:59:08Z 2024-05-01 article Bitencourt-Ferreira, G., Villarreal, M. A., Quiroga, R., Biziukova, N., Poroikov, V., Tarasova, O., & de Azevedo Junior, W. F. (2024). Exploring Scoring Function Space: Developing Computational Models for Drug Discovery. Current Medicinal Chemistry, 31(17), 2361-2377. http://hdl.handle.net/11086/552745 1875-533X https://www.ingentaconnect.com/content/ben/cmc/2024/00000031/00000017/art00005 https://pubmed.ncbi.nlm.nih.gov/36944627/ http://doi.org/10.2174/0929867330666230321103731 eng Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/
spellingShingle Scoring function space
Drug discovery
Machine learning
Protein space
Protein-ligand interactions
Systems biology
Bitencourt Ferreira, Gabriela
Villarreal, Marcos A.
Quiroga, Rodrigo
Biziukova, Nadezhda
Poroikov, Vladimir
Tarasova, Olga
de Azevedo, Walter F. Jr.
Exploring Scoring Function Space: Developing Computational Models for Drug Discovery
title Exploring Scoring Function Space: Developing Computational Models for Drug Discovery
title_full Exploring Scoring Function Space: Developing Computational Models for Drug Discovery
title_fullStr Exploring Scoring Function Space: Developing Computational Models for Drug Discovery
title_full_unstemmed Exploring Scoring Function Space: Developing Computational Models for Drug Discovery
title_short Exploring Scoring Function Space: Developing Computational Models for Drug Discovery
title_sort exploring scoring function space developing computational models for drug discovery
topic Scoring function space
Drug discovery
Machine learning
Protein space
Protein-ligand interactions
Systems biology
url http://hdl.handle.net/11086/552745
https://www.ingentaconnect.com/content/ben/cmc/2024/00000031/00000017/art00005
https://pubmed.ncbi.nlm.nih.gov/36944627/
http://doi.org/10.2174/0929867330666230321103731
work_keys_str_mv AT bitencourtferreiragabriela exploringscoringfunctionspacedevelopingcomputationalmodelsfordrugdiscovery
AT villarrealmarcosa exploringscoringfunctionspacedevelopingcomputationalmodelsfordrugdiscovery
AT quirogarodrigo exploringscoringfunctionspacedevelopingcomputationalmodelsfordrugdiscovery
AT biziukovanadezhda exploringscoringfunctionspacedevelopingcomputationalmodelsfordrugdiscovery
AT poroikovvladimir exploringscoringfunctionspacedevelopingcomputationalmodelsfordrugdiscovery
AT tarasovaolga exploringscoringfunctionspacedevelopingcomputationalmodelsfordrugdiscovery
AT deazevedowalterfjr exploringscoringfunctionspacedevelopingcomputationalmodelsfordrugdiscovery