A new approach to image segmentation with two-dimensional hidden Markov models

Fil: Baumgartner, Josef. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.

Bibliographic Details
Main Authors: Baumgartner, Josef, Flesia, Ana Georgina, Gimenez, Javier, Pucheta, Julian
Format: conferenceObject
Language:eng
Published: 2021
Subjects:
Online Access:http://hdl.handle.net/11086/21146
_version_ 1801214929577967616
author Baumgartner, Josef
Flesia, Ana Georgina
Gimenez, Javier
Pucheta, Julian
author_facet Baumgartner, Josef
Flesia, Ana Georgina
Gimenez, Javier
Pucheta, Julian
author_sort Baumgartner, Josef
collection Repositorio Digital Universitario
description Fil: Baumgartner, Josef. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina.
format conferenceObject
id rdu-unc.21146
institution Universidad Nacional de Cordoba
language eng
publishDate 2021
record_format dspace
spelling rdu-unc.211462021-11-05T09:22:58Z A new approach to image segmentation with two-dimensional hidden Markov models Baumgartner, Josef Flesia, Ana Georgina Gimenez, Javier Pucheta, Julian Classification Agriculture Markov Models Hidden Markov chains Fil: Baumgartner, Josef. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Fil: Flesia, Ana Georgina. Universidad Tecnológica Nacional; Argentina. Fil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Flesia, Ana Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Gimenez, Javier. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Pucheta, Julián. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Image segmentation is one of the fundamental problems in computer vision. In this work, we present a new segmentation algorithm that is based on the theory of twodimensional hidden Markov models (2D-HMM). Unlike most 2DHMM approaches we do not apply the Viterbi Algorithm, instead we present a computationally efficient algorithm that propagates the state probabilities through the image. This approach can easily be extended to higher dimensions. We compare the proposed method with a 2D-HMM standard algorithm and Iterated Conditional Modes using real world images like a radiography or a satellite image as well as synthetic images. The experimental results show that our approach is highly capable of condensing image segments. This gives our algorithm a significant advantage over the standard algorithm when dealing with noisy images with few classes. Fil: Baumgartner, Josef. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Fil: Flesia, Ana Georgina. Universidad Tecnológica Nacional; Argentina. Fil: Flesia, Ana Georgina. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Flesia, Ana Georgina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Gimenez, Javier. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Pucheta, Julián. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales; Argentina. Sistemas de Automatización y Control 2021-11-03T18:02:40Z 2021-11-03T18:02:40Z 2013 conferenceObject http://hdl.handle.net/11086/21146 eng Attribution-NonCommercial-ShareAlike 4.0 International https://creativecommons.org/licenses/by-nc-sa/4.0/ Electrónico y/o Digital
spellingShingle Classification
Agriculture
Markov Models
Hidden Markov chains
Baumgartner, Josef
Flesia, Ana Georgina
Gimenez, Javier
Pucheta, Julian
A new approach to image segmentation with two-dimensional hidden Markov models
title A new approach to image segmentation with two-dimensional hidden Markov models
title_full A new approach to image segmentation with two-dimensional hidden Markov models
title_fullStr A new approach to image segmentation with two-dimensional hidden Markov models
title_full_unstemmed A new approach to image segmentation with two-dimensional hidden Markov models
title_short A new approach to image segmentation with two-dimensional hidden Markov models
title_sort new approach to image segmentation with two dimensional hidden markov models
topic Classification
Agriculture
Markov Models
Hidden Markov chains
url http://hdl.handle.net/11086/21146
work_keys_str_mv AT baumgartnerjosef anewapproachtoimagesegmentationwithtwodimensionalhiddenmarkovmodels
AT flesiaanageorgina anewapproachtoimagesegmentationwithtwodimensionalhiddenmarkovmodels
AT gimenezjavier anewapproachtoimagesegmentationwithtwodimensionalhiddenmarkovmodels
AT puchetajulian anewapproachtoimagesegmentationwithtwodimensionalhiddenmarkovmodels
AT baumgartnerjosef newapproachtoimagesegmentationwithtwodimensionalhiddenmarkovmodels
AT flesiaanageorgina newapproachtoimagesegmentationwithtwodimensionalhiddenmarkovmodels
AT gimenezjavier newapproachtoimagesegmentationwithtwodimensionalhiddenmarkovmodels
AT puchetajulian newapproachtoimagesegmentationwithtwodimensionalhiddenmarkovmodels