El Catálogo Colectivo reúne los registros del material que posee cada una de las
bibliotecas de la Universidad Nacional de Córdoba, pudiendo encontrarse colecciones
especializadas y actualizadas en todas las áreas del conocimiento; lo que permite una
amplia visibilidad y garantiza el acceso al patrimonio documental de la Universidad.
Se encuentra disponible para toda la comunidad académica: estudiantes, docentes,
egresados e investigadores.
Si formas parte de la comunidad de la UNC también podés solicitar préstamos de material,
a cualquier biblioteca universitaria, utilizando el servicio de préstamo interbibliotecario,
independientemente de la facultad a la que pertenezcas, la carrera que curses o la cátedra
que dictes.
Developing machine learning models for air temperature estimation using MODIS data
Air temperature is a key variable in a wide range of environmental applications, including land–atmosphere interaction, climate change research and hydrology and crop growth models, among others. The objective of this study was to estimate daily maximum (Tmax) and minimum (Tmin) temperatures, based...
Air temperature is a key variable in a wide range of environmental applications, including land–atmosphere interaction, climate change research and hydrology and crop growth models, among others. The objective of this study was to estimate daily maximum (Tmax) and minimum (Tmin) temperatures, based on MODIS AQUA/TERRA land surface temperature (LST), NDVI, extraterrestrial solar radiation and precipitation data. Artificial neural networks (ANN) and random forests (RF) models were developed to predict these temperatures covering weather stations in Córdoba (Argentina) for 2018-2020. The results show that RF and ANN machine learning algorithms are capable of modeling non-linear relationships between registered temperatures and LST MODIS data, in a very robust way. The validation of the models confirms that Tmax and Tmin can be accurately estimated using, jointly or separately, AQUA and TERRA LST. The best models present determination coefficients equal to 0.81/0.91 and root mean square error of 2.7/2.1 ºC for Tmax/Tmin, when using AQUA LST day/night satellite overpass time data, respectively. The robustness and confidence of the models developed, and the ease and free accessibility of input data at a global scale, suggest that these methodologies have the potential to be applied to other regions.