d’Alembert–Lagrange analytical dynamics for nonholonomic systems

The d’Alembert–Lagrange principle (DLP) is designed primarily for dynamical systems under ideal geometric constraints. Although it can also cover linear-velocity constraints, its application to nonlinear kinematic constraints has so far remained elusive, mainly because there is no clear method where...

Full description

Bibliographic Details
Main Author: Flannery, M. R.
Format: Electronic Article
Language:English
Subjects:
Online Access:Texto completo

MARC

LEADER 00000nma a22000007a 4500
003 AR_CdUFM
005 20210831141031.0
006 m|||||o||d||00| 0
007 cr |||||||||||
008 s2011 us||| |o||||||0| | eng||
040 |a AR_CdUFM   |b spa 
041 |a eng 
100 1 |9 24837  |a Flannery, M. R. 
245 1 0 |a d’Alembert–Lagrange analytical dynamics for nonholonomic systems  |h [recurso electrónico] /  |c M. R. Flannery. 
300 |a 1 recurso en línea (p. 032705-1-032705-29) 
520 |a The d’Alembert–Lagrange principle (DLP) is designed primarily for dynamical systems under ideal geometric constraints. Although it can also cover linear-velocity constraints, its application to nonlinear kinematic constraints has so far remained elusive, mainly because there is no clear method whereby the set of linear conditions that restrict the virtual displacements can be easily extracted from the equations of constraint. On recognition that the commutation rule traditionally accepted for velocity displacements in Lagrangian dynamics implies displaced states that do not satisfy the kinematic constraints, we show how the property of possible displaced states can be utilized ab initio so as to provide an appropriate set of linear auxiliary conditions on the displacements, which can be adjoined via Lagrange’s multipliers to the d’Alembert–Lagrange equation to yield the equations of state, and also new transpositional relations for nonholonomic systems. The equations of state so obtained for systems under general nonlinear velocity and acceleration constraints are shown to be identical with those derived (in Appendix A) from the quite different Gauss principle. The present advance therefore solves a long outstanding problem on the application of DLP to ideal nonholonomic systems and, as an aside, provides validity to axioms as the Chetaev rule, previously left theoretically unjustified 
650 4 |a d’Alembert-Lagrange equation  
650 4 |a Dynamical systems 
650 4 |a d’Alembert–Lagrange principle 
773 |g Vol. 52 No. 3 (2011)  |t Journal of Mathematical Physics 
856 |u https://people.nscl.msu.edu/~hergert/phy820/material/pdfs/Flannery2011_d%E2%80%99Alembert%E2%80%93Lagrange%20analytical%20dynamics%20for%20nonholonomic%20systems.pdf  |y Texto completo 
942 |2    |c ARTDEREVL 
945 |a MEG  |d 2021-08-31 
952 |0 0  |1 0  |2    |4 0  |6 ARTÍCULO_DE_REVISTA_EN_LÍNEA  |7 0  |9 45031  |a MMA  |b MMA  |c Recurso en línea  |d 2021-08-31  |l 0  |o Artículo de Revista en Línea  |p ARL0026  |r 2021-08-31 00:00:00  |u https://people.nscl.msu.edu/~hergert/phy820/material/pdfs/Flannery2011_d%E2%80%99Alembert%E2%80%93Lagrange%20analytical%20dynamics%20for%20nonholonomic%20systems.pdf  |w 2021-08-31  |y ARTDEREVL 
999 |c 20606  |d 20604