Permutation groups and cartesian decompositions

Permutation groups, their fundamental theory and applications are discussed in this introductory book. It focuses on those groups that are most useful for studying symmetric structures such as graphs, codes and designs. Modern treatments of the O'Nan–Scott theory are presented not only for prim...

Full description

Bibliographic Details
Main Author: Praeger, Cheryl E. 1948-
Other Authors: Schneider, Csaba
Format: Book
Language:English
Published: Cambridge: Cambridge University Press, 2018.
Series:London Mathematical Society. Lecture note series, v. 449
Subjects:
Online Access:Texto completo

MARC

LEADER 00000nam a22000007a 4500
001 20058
003 AR_CdUFM
005 20250403154454.0
006 a|||||o|||| 00| 0
007 cr |||||||||||
008 201020s2018 ||||| |||| 00| 0 eng d
020 |a 9781108620239 
020 |a 9780521675062 
040 |a AR_CdUFM   |b spa  |d AR_CdUFM  
041 |a eng 
100 |9 13748  |a Praeger, Cheryl E.  |d 1948- 
245 1 0 |a Permutation groups and cartesian decompositions  |h [recurso electrónico] /  |c Cheryl E. Praeger, Csaba Schneider. 
260 |a Cambridge:  |b Cambridge University Press,  |c 2018. 
300 |a 1 recurso en línea (323 páginas) :  |b ilustraciones 
490 |a London Mathematical Society. Lecture note series,  |v v. 449 
500 |a Libro electrónico EBSCOHost 
505 0 |t Introduction 
505 0 |t Group actions and permutation groups 
505 0 |t Minimal normal subgroups of transitive permutation groups 
505 0 |t Finite direct products of groups 
505 0 |t Wreath products 
505 0 |t Twisted wreath products 
505 0 |t O’Nan–Scott theory and the maximal subgroups of finite alternating and symmetric groups 
505 0 |t Cartesian factorisations 
505 0 |t Transitive cartesian decompositions for innately transitive groups 
505 0 |t Intransitive cartesian decompositions 
505 0 |t Applications in permutation group theory 
505 0 |t Applications to graph theory 
520 |a Permutation groups, their fundamental theory and applications are discussed in this introductory book. It focuses on those groups that are most useful for studying symmetric structures such as graphs, codes and designs. Modern treatments of the O'Nan–Scott theory are presented not only for primitive permutation groups but also for the larger families of quasiprimitive and innately transitive groups, including several classes of infinite permutation groups. Their precision is sharpened by the introduction of a cartesian decomposition concept. This facilitates reduction arguments for primitive groups analogous to those, using orbits and partitions, that reduce problems about general permutation groups to primitive groups. The results are particularly powerful for finite groups, where the finite simple group classification is invoked. Applications are given in algebra and combinatorics to group actions that preserve cartesian product structures. Students and researchers with an interest in mathematical symmetry will find the book enjoyable and useful. 
650 4 |a Permutation groups 
650 4 |a Algebra 
650 4 |a Cartesian decompositions 
650 4 |a Transitive groups 
700 1 |9 24199  |a Schneider, Csaba 
856 |u https://search.ebscohost.com/login.aspx?authtype=uid&custid=ns174763&groupid=main&profile=ehost  |y Texto completo  |z Datos para ingreso al texto completo: USUARIO: uncmat CONTRASEÑA: Argentina2025! 
942 |2    |c LIBROELECT 
945 |a MEG  |d 2020-10-21 
999 |c 20058  |d 20056 
952 |0 0  |1 0  |2    |4 0  |7 0  |a MMA  |b MMA  |c EBSCOHost  |d 2020-10-21  |e Compra Subsidio Programa Bibliotecas 2019  |o Libro electrónico EBSCO  |p LE00004  |r 2020-10-21 00:00:00  |u https://search.ebscohost.com/login.aspx?authtype=uid&custid=ns174763&groupid=main&profile=ehost  |w 2020-10-21  |y LIBROELECT  |z Datos para ingreso al texto completo: USUARIO: uncmat CONTRASEÑA: Argentina2025!