El Catálogo Colectivo reúne los registros del material que posee cada una de las
bibliotecas de la Universidad Nacional de Córdoba, pudiendo encontrarse colecciones
especializadas y actualizadas en todas las áreas del conocimiento; lo que permite una
amplia visibilidad y garantiza el acceso al patrimonio documental de la Universidad.
Se encuentra disponible para toda la comunidad académica: estudiantes, docentes,
egresados e investigadores.
Si formas parte de la comunidad de la UNC también podés solicitar préstamos de material,
a cualquier biblioteca universitaria, utilizando el servicio de préstamo interbibliotecario,
independientemente de la facultad a la que pertenezcas, la carrera que curses o la cátedra
que dictes.
Introduction to Stochastic Dynamic Programming presents the basic theory and examines the scope of applications of stochastic dynamic programming. The book begins with a chapter on various finite-stage models, illustrating the wide range of applications of stochastic dynamic programming. Subsequent...
|a Introduction to stochastic dynamic programming /
|c Sheldon Ross.
260
|a San Diego, Calif. :
|b Academic Press,
|c 1983
300
|a xi, 164 p.
504
|a Incluye bibliografía
520
3
|a Introduction to Stochastic Dynamic Programming presents the basic theory and examines the scope of applications of stochastic dynamic programming. The book begins with a chapter on various finite-stage models, illustrating the wide range of applications of stochastic dynamic programming. Subsequent chapters study infinite-stage models: discounting future returns, minimizing nonnegative costs, maximizing nonnegative returns, and maximizing the long-run average return. Each of these chapters first considers whether an optimal policy need exist—providing counterexamples where appropriate—and then presents methods for obtaining such policies when they do. In addition, general areas of application are presented. The final two chapters are concerned with more specialized models. These include stochastic scheduling models and a type of process known as a multiproject bandit. The mathematical prerequisites for this text are relatively few. No prior knowledge of dynamic programming is assumed and only a moderate familiarity with probability— including the use of conditional expectation—is necessary.