On the robustness of standalone referring expression generation algorithms using RDF data

Ponencia presentada en el 2nd International Workshop on Natural Language Generation and the Semantic Web. Edimburgo, Escocia, 6 de septiembre de 2016.

Bibliographic Details
Main Authors: Duboué, Pablo Ariel, Domínguez, Martín Ariel, Estrella, Paula Susana
Other Authors: https://orcid.org/0000-0002-1815-0117
Format: acceptedVersion
Language:eng
Published: 2023
Subjects:
Online Access:https://aclanthology.org/W16-3504/
http://hdl.handle.net/11086/547792
_version_ 1801214985384230912
author Duboué, Pablo Ariel
Domínguez, Martín Ariel
Estrella, Paula Susana
author2 https://orcid.org/0000-0002-1815-0117
author_facet https://orcid.org/0000-0002-1815-0117
Duboué, Pablo Ariel
Domínguez, Martín Ariel
Estrella, Paula Susana
author_sort Duboué, Pablo Ariel
collection Repositorio Digital Universitario
description Ponencia presentada en el 2nd International Workshop on Natural Language Generation and the Semantic Web. Edimburgo, Escocia, 6 de septiembre de 2016.
format acceptedVersion
id rdu-unc.547792
institution Universidad Nacional de Cordoba
language eng
publishDate 2023
record_format dspace
spelling rdu-unc.5477922023-08-31T13:16:33Z On the robustness of standalone referring expression generation algorithms using RDF data Duboué, Pablo Ariel Domínguez, Martín Ariel Estrella, Paula Susana https://orcid.org/0000-0002-1815-0117 Referring expressions Resource Description Framework RDF data Natural language generation Ponencia presentada en el 2nd International Workshop on Natural Language Generation and the Semantic Web. Edimburgo, Escocia, 6 de septiembre de 2016. acceptedVersion Fil: Duboué, Pablo Ariel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Domínguez, Martín Ariel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Estrella, Paula Susana. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. A sub-task of Natural Language Generation (NLG) is the generation of referring expressions (REG). REG algorithms are expected to select attributes that unambiguously identify an entity with respect to a set of distractors. In previous work we have defined a methodology to evaluate REG algorithms using real life examples. In the present work, we evaluate REG algorithms using a dataset that contains alterations in the properties of referring entities. We found that naturally occurring ontological re-engineering can have a devastating impact in the performance of REG algorithms, with some more robust in the presence of these changes than others. The ultimate goal of this work is observing the behavior and estimating the performance of a series of REG algorithms as the entities in the data set evolve over time. http://www.aclweb.org/anthology/W16-3500 acceptedVersion Fil: Duboué, Pablo Ariel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Domínguez, Martín Ariel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Estrella, Paula Susana. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Otras Ciencias de la Computación e Información 2023-06-15T13:22:26Z 2023-06-15T13:22:26Z 2016 conferenceObject https://aclanthology.org/W16-3504/ http://hdl.handle.net/11086/547792 eng Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es Electrónico y/o Digital
spellingShingle Referring expressions
Resource Description Framework
RDF data
Natural language generation
Duboué, Pablo Ariel
Domínguez, Martín Ariel
Estrella, Paula Susana
On the robustness of standalone referring expression generation algorithms using RDF data
title On the robustness of standalone referring expression generation algorithms using RDF data
title_full On the robustness of standalone referring expression generation algorithms using RDF data
title_fullStr On the robustness of standalone referring expression generation algorithms using RDF data
title_full_unstemmed On the robustness of standalone referring expression generation algorithms using RDF data
title_short On the robustness of standalone referring expression generation algorithms using RDF data
title_sort on the robustness of standalone referring expression generation algorithms using rdf data
topic Referring expressions
Resource Description Framework
RDF data
Natural language generation
url https://aclanthology.org/W16-3504/
http://hdl.handle.net/11086/547792
work_keys_str_mv AT dubouepabloariel ontherobustnessofstandalonereferringexpressiongenerationalgorithmsusingrdfdata
AT dominguezmartinariel ontherobustnessofstandalonereferringexpressiongenerationalgorithmsusingrdfdata
AT estrellapaulasusana ontherobustnessofstandalonereferringexpressiongenerationalgorithmsusingrdfdata