El Catálogo Colectivo reúne los registros del material que posee cada una de las
bibliotecas de la Universidad Nacional de Córdoba, pudiendo encontrarse colecciones
especializadas y actualizadas en todas las áreas del conocimiento; lo que permite una
amplia visibilidad y garantiza el acceso al patrimonio documental de la Universidad.
Se encuentra disponible para toda la comunidad académica: estudiantes, docentes,
egresados e investigadores.
Si formas parte de la comunidad de la UNC también podés solicitar préstamos de material,
a cualquier biblioteca universitaria, utilizando el servicio de préstamo interbibliotecario,
independientemente de la facultad a la que pertenezcas, la carrera que curses o la cátedra
que dictes.
Comparison of variable selection procedures to model weather-pathogen relation in crops
Nowadays it is possible to easily access large volumes of georeferenced climatic data. These data can be used to model the relationship between climatic conditions and disease from multiple meteorological variables, usually correlated and redundant. The selection of variables allows the identificati...
Nowadays it is possible to easily access large volumes of georeferenced climatic data. These data can be used to model the relationship between climatic conditions and disease from multiple meteorological variables, usually correlated and redundant. The selection of variables allows the identification of a subset of relevant regressors to build predictive models. Stepwise, Boruta, and LASSO are variable selection procedures of different nature, so their relative performance has been scarcely explored. The objective of this work was the comparison of these methods simultaneously applied in the construction of regression models to predict disease risk from climatic data. Three georeferenced databases were used with presence/absence values of different pathogens in maize crops in Argentina. For each scenario, climatic variables from the period prior to sowing until harvest were obtained. The three variable selection methods obtained models with accuracy close to 70 %. However, LASSO produced the best predictive model, selecting an intermediate number of variables with respect to Stepwise (lower number) and Boruta (higher number). The results could be extended to other pathosystems and inspire the construction of alarm systems based on climatic variables.