El Catálogo Colectivo reúne los registros del material que posee cada una de las
bibliotecas de la Universidad Nacional de Córdoba, pudiendo encontrarse colecciones
especializadas y actualizadas en todas las áreas del conocimiento; lo que permite una
amplia visibilidad y garantiza el acceso al patrimonio documental de la Universidad.
Se encuentra disponible para toda la comunidad académica: estudiantes, docentes,
egresados e investigadores.
Si formas parte de la comunidad de la UNC también podés solicitar préstamos de material,
a cualquier biblioteca universitaria, utilizando el servicio de préstamo interbibliotecario,
independientemente de la facultad a la que pertenezcas, la carrera que curses o la cátedra
que dictes.
Source-Sink relationship in runner-type peanut cultivars (Arachis hypogaea L.) grown in Argentina
Assimilate partitioning into reproductive structures is a relevant physiological feature in increasing peanut yield, and its analysis through the source-sink relationship is an important contribution to genetic improvement and crop management. The objective was to analyze the source-sink relationshi...
Assimilate partitioning into reproductive structures is a relevant physiological feature in increasing peanut yield, and its analysis through the source-sink relationship is an important contribution to genetic improvement and crop management. The objective was to analyze the source-sink relationship of runner-type cultivars grown in Argentina. Two field experiments were performed, Exp1 consisted in the analysis of the cultivar Granoleico in three sowing dates during 2009-2010 and 2010-2011. In Exp2, six runner-type cultivars (Florunner, Florman, Manigran, Asem-485, Pepe-Asem and Granoleico) were sown during 2011-2012. The source-sink relationship was analyzed using two methodologies: total biomass assigned to each pod during pod filling period (g pod-1) in relation to its final weight, and analysis of the trade-off between pod number and pod weight at harvest. The lack of trade-off between pod number and weight showed that the peanut plant has conditions to fill a wide number of pods (20-57 pods plant-1) in the same way. Also, the average pod weight (1.05 g) was lower than the total plant biomass assigned to that pod during its formation (2.63 g). A marked limitation by sinks was determined, indicating the possibility of to increase the peanut yield by means of improvements in sinks size.