Probabilistic machine learning : advanced topics /

Un libro avanzado para investigadores y estudiantes de posgrado que trabajan en aprendizaje automático y estadística y quieren aprender sobre aprendizaje profundo, inferencia bayesiana, modelos generativos y toma de decisiones bajo incertidumbre. Una contrapartida avanzada a Probabilistic Machine L...

Full description

Bibliographic Details
Main Author: Murphy, Kevin P. (Kevin Patrick) (autor)
Format: Book
Language:English
Published: Cambridge, Mass. : The MIT Press, ©2023
Series:Adaptive computation and machine learning
Subjects:
Online Access:Información sobre el autor
Table of Contents:
  • Introduction
  • 1. Fundamentals: probability. Statistics. Graphical models. Information theory. Optimization
  • 2. Inference: Inference algothms. Gaussian filtering and smoothind. Message passing algorithms. Variational inference. Monte Carlo methods. Markov chain Monte Carlo. Sequential Monte Carlo
  • 3. Prediction: Predictive models. Generalized lineal models. Deep neural networks. Bayesian neural networks. Gaussian processes. Beyond the iid assumption
  • 4. Generation: Generative models. Variational autoencoders. Autoregressive models. Normalizing flows. Enery-based models. Diffusion models. Generative adversarial networks
  • 5. Discovery: Latent factor models. State-space models. Graph learning. Nonparametric bayesian models. Representation learning. Interpretability
  • 6. Action: Decision making under uncertainty. Reinforcement learning. Causality.