Probabilistic machine learning : advanced topics /

Un libro avanzado para investigadores y estudiantes de posgrado que trabajan en aprendizaje automático y estadística y quieren aprender sobre aprendizaje profundo, inferencia bayesiana, modelos generativos y toma de decisiones bajo incertidumbre. Una contrapartida avanzada a Probabilistic Machine L...

Full description

Bibliographic Details
Main Author: Murphy, Kevin P. (Kevin Patrick) (autor)
Format: Book
Language:English
Published: Cambridge, Mass. : The MIT Press, ©2023
Series:Adaptive computation and machine learning
Subjects:
Online Access:Información sobre el autor
Description
Summary:Un libro avanzado para investigadores y estudiantes de posgrado que trabajan en aprendizaje automático y estadística y quieren aprender sobre aprendizaje profundo, inferencia bayesiana, modelos generativos y toma de decisiones bajo incertidumbre. Una contrapartida avanzada a Probabilistic Machine Learning: An Introduction, este libro de texto de alto nivel proporciona a los investigadores y estudiantes de posgrado una cobertura detallada de los temas de vanguardia en el aprendizaje automático, incluyendo el modelado generativo profundo, los modelos gráficos, la inferencia bayesiana, el aprendizaje por refuerzo y la causalidad. Este volumen sitúa el aprendizaje profundo en un contexto estadístico más amplio y unifica los enfoques basados en el aprendizaje profundo con los basados en el modelado probabilístico y la inferencia. Con contribuciones de los mejores científicos y expertos en la materia de lugares como Google, DeepMind, Amazon, Purdue University, NYU y la Universidad de Washington, este libro riguroso es esencial para comprender las cuestiones vitales del aprendizaje automático.
Physical Description:xxxi, 1319 páginas : ilustraciones (color), gráficos
Bibliography:Bibliografía: páginas 1239-1319.
ISBN:9780262048439