Mathematics for economists : an introductory textbook /
Main Author: | |
---|---|
Other Authors: | |
Format: | Book |
Language: | English |
Published: |
Manchester :
Manchester University Press,
2020, c2016
|
Edition: | 4th ed. reprinted with corrections |
Subjects: | |
Online Access: | Respuesta a los ejercicios Solución a los problemas Tabla de contenido detallada |
- Preface
- Answres and solutions
- The Greek alphabet
- 1. Linear equations
- 2. Linear inequalities
- 3. Sets and functions
- 4. Quadratics, indices and logarithms
- 5. Sequences, series and limits
- 6. Introduction to differentiation
- 7. Methods of differentiation
- 8. Maxima and minima
- 9. Exponential and logarithmic functions
- 10. Approximations
- 11. Matrix algebra
- 12. Systems of linear equations
- 13. Determinants and quadratic forms
- 14. Functions of several variables
- 15. Implicit relations
- 16. Optimisation with several variables
- 17. Principles of constrained optimisation
- 18. Further topics in constrained optimisation
- 19. Integration
- 20. Aspects of integral calculus
- 21. Probability
- 22. Expectation
- 23. Introduction to dynamics
- 24. The circular functions
- 25. Complex numbers
- 26. Further dynamics
- 27. Eigenvalues and eigenvectors
- 28. Dynamic systems
- 29. Dynamic optimisation in discrete time
- 30. Dynamic optimisation in continuous time
- 31. Introduction to analysis
- 32. Metric spaces and existence theorems.
- Note on further reading.