Bayesian regression modeling with INLA /

INLA stands for Integrated Nested Laplace Approximations, which is a new method for fitting a broad class of Bayesian regression models. No samples of the posterior marginal distributions need to be drawn using INLA, so it is a computationally convenient alternative to Markov chain Monte Carlo (MCMC...

Full description

Bibliographic Details
Main Author: Wang, Xiaofeng
Other Authors: Yue, Yu, 1981-, Faraway, Julian J. (Julian James)
Format: Book
Language:English
Published: Boca Raton, Fl. : CRC Press, c2018
Edition:1rst ed.
Series:Chapman & Hall/CRC computer science & data analysis series
Subjects:
Online Access:https://ar1lib.org/book/3580359/87333a
Información sobre Wang
Información sobre Yue
Información sobre Faraway
Table of Contents:
  • 1. Introduction
  • 2. Theory of INLA
  • 3. Bayesian linear regression
  • 4. Generalized linear models
  • 5. Linear mixed and generalized linear mixed models
  • 6. Survival analysis
  • 7. Random walk models for smoothing methods
  • 8. Gaussian process regression
  • 9. Additive and generalized additive models
  • 10. Errors-in-variables regression
  • 11. Miscellaneous topics in INLA
  • Appendix A: Installation
  • Appendix B: Uninformative priors in linear regression
  • Bibliography.